Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula.
نویسندگان
چکیده
The postembryonic development of lateral roots and nodules is a highly regulated process. Recent studies suggest the existence of cross talk and interdependency in the growth of these two organs. Although plant hormones, including auxin and cytokinin, appear to be key players in coordinating this cross talk, very few genes that cross-regulate root and nodule development have been uncovered so far. This study reports that a homolog of CELL DIVISION CYCLE16 (CDC16), a core component of the Anaphase Promoting Complex, is one of the key mediators in controlling the overall number of lateral roots and nodules. A partial suppression of this gene in Medicago truncatula leads to a decrease in number of lateral roots and a 4-fold increase in number of nodules. The roots showing lowered expression of MtCDC16 also show reduced sensitivity to phytohormone auxin, thus providing a potential function of CDC16 in auxin signaling.
منابع مشابه
Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation
Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early sta...
متن کاملDiffering requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula.
* In this study, we tested whether the organogenesis of symbiotic root nodules, lateral roots and root galls induced by parasitic root knot nematodes (Meloidogyne javanica) was regulated by the presence of flavonoids in the roots of Medicago truncatula. Flavonoids accumulate in all three types of root organ, and have been hypothesized previously to be required for secondary root organogenesis b...
متن کاملThe compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula.
The root system architecture is crucial to adapt plant growth to changing soil environmental conditions and consequently to maintain crop yield. In addition to root branching through lateral roots, legumes can develop another organ, the nitrogen-fixing nodule, upon a symbiotic bacterial interaction. A mutant, cra1, showing compact root architecture was identified in the model legume Medicago tr...
متن کاملDefective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant.
Long-distance auxin transport was examined in Medicago truncatula and in its supernodulating mutant sunn (super numeric nodules) to investigate the regulation of auxin transport during autoregulation of nodulation (AON). A method was developed to monitor the transport of auxin from the shoot to the root in whole seedlings. Subsequently, the transport was monitored after inoculation of roots wit...
متن کاملSilencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia.
Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 151 3 شماره
صفحات -
تاریخ انتشار 2009